PRODUCTS :
Staircases
Railings and Fences
Entrance Canopies
Glass Structures
Forging
Casting
Woodworking
Rope Systems
Shipbuilding
Refractories
Wind Turbines

MRC ENGINEERING AND MANUFACTURING
ABOUT US PRODUCTS DESIGN PRODUCTION GALLERY VIDEO ARTICLES PARTNERS VACANCIES SITEMAP

Follow us:



MRC SCIENCE AND TECHNOLOGY
R&D PROJECTS PERSONALITY IN SCIENCE International research and education Methods of testing and research Standardization and Certification NANOTECHNOLOGY NEW ENERGY SCIENCE AND TECHNOLOGY ARTICLES


JOURNAL "DOM"
NEWS OF SCIENCE NEWS OF ENGINEERING


LINKS
Materials Research Centre Ltd. DREXEL UNIVERSITY DNI Carbon materials LINKS Yandex Search

News from DOM.UA - science
Íàïèñàë Âåðîíèêà   
05.01.2011 20:21


Multifunctional carbon-nanotube cellular endoscopes

Artist renderings of a nano-needle poking a single cell have become the symbol of nanotechnology, surfacing on covers of magazines and books for about a decade but actual nano-needles able to interrogate small cells without causing cellular damage have not become reality until recently. A Drexel University team of engineers, scientists and biologists have developed a carbon nanotube-based device for probing single living cells without damaging them. This technique will allow experts to identify diseases in their early stage and advance drug discovery.
The research led by Dr. Yury Gogotsi, professor of materials science and engineering and director of the A.J. Drexel Nanotechnology Institute (DNI) , and Dr. Gary Friedman, professor of electrical engineering, uses the nanotube-based device, known as a cellular endoscope, to evaluate cells about a thousand times smaller than a human hair. The cellular endoscope interrogates the intracellular environment of living cells, delivers fluorescent quantum dots and analyzes molecules inside a cell without the cell recognizing the needle’s presence.

cellular probe

“Drexel’s W. M. Keck Institute for Attofluidic Probes now manufactures the smallest endoscopes ever created,” Gogotsi said. “Endoscopes provide a potentially transformative technology for studying the fundamentals of single living cells and more broadly, for cell biology.”
Cell biologists usually destroy a large number of cells to extract cellular components and biological molecules needed for identifying diseases and analyzing effects of new drugs, or to achieve a better understanding of how the cell functions. Glass pipettes are widely used to inject material into cells. The pipettes cause too much damage to remain within the cell for a long time and are not designed to report information in the form of optical or electrical signals from within the cell.

cell-interrogation-by-endoscope

“We had an idea for a minimally invasive cellular probe, the tip of which could remain within the cell for a long time while reporting important information in the form of optical and electrical signals and transferring tiny amounts of material to and from the cell. This probe is similar to an endoscope employed by doctors to perform minimally invasive operations inside human patients, only much smaller” said Friedman. “A cellular endoscope reported here is a novel, but conceptually simple device,” said Riju Singhal, a doctoral candidate and author of the article “Multifunctional carbon-nanotube cellular endoscopes” published in the Nature Nanotechnology journal.
“It consists of a single carbon nanotube connected to the tips of larger glass micropipettes that are commonly employed in biological studies, enabling them to become widely used in the near future,” said Singhal.
Dr. Michael Schrlau, research assistant professor in Drexel’s Material Science and Engineering who directs the research laboratory of the W. M. Keck Institute, said, “We’re now building upon the multiple demonstrated functions of cellular endoscopes to help answer elusive cell biological questions. One application of cellular endoscopes being actively pursued is intracellular surface-enhanced Raman spectroscopy with gold-coated endoscopes.”

The Drexel team is funded by the Nanoscale Interdisciplinary Research Team National Science Foundation grant and the W. M. Keck Foundation.

Reference:

Singhal, R., Orynbayeva, Z., Kalyana Sundaram, R., Niu, J., Bhattacharyya, S., Vitol, E., Schrlau, M., Papazoglou, E., Friedman, G., & Gogotsi, Y. Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotechnology 6 (2011) 57–64, DOI: 10.1038/nnano.2010.241

Drexel Researchers Create Early Disease Detection and Drug Delivery Device for Single Living Cells// http://www.drexel.edu/news/headlines/drexel-researchers-create-early-disease-detection-and-drug-delivery-device-for-single-living-cells.aspx

 
< Ïðåä.   Ñëåä. >

MRC ltd. / Kiev MATERIALS RESEARCH CENTRE    
www.dom.ua    

Science
26.08.2017 02:57
Drexel researchers have developed a recipe for self batteries
MXene
Researchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries...
 
04.06.2017 23:47
Professor Yury Gogotsi was speaking about nanotechnology in energy storage at the World Science Fest
MXene
Join world-class nanoscientists and environmental leaders to explore how the capacity to harness molecules and atoms is accelerating spectacular inventions — including light-weight “wonder materials,” vital energy-storage technologies, and new sources of renewable energy — which promise to redefine the very future of energy...
 
04.06.2017 23:39
MXenes discovered by prof. Yury Gogotsi are at the forefront of 2D materials research
MXene
It’s been just over five years since researchers in Drexel’s Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
11.02.2017 18:56
MATERIAL WITNESSES — RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXEL’S 2D MXENE
MXene
It’s been just over five years since researchers in Drexel’s Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
Engineering
05.12.2009 19:20
In Ukraine was designed and produced its own sliding door system made of polished stainless steel
Sliding door system made of polished stainless steel for internal glass sliding door
Engineers of Materials Research Centre designed and produced the first in Ukraine modernized sliding door system made of polished stainless steel, used for sliding door and panel structures with tempered glass
 
03.12.2009 10:20
Dr. Selçuk Güçeri Named 2010 Delaware Valley Engineer of the Year
Dr. S.Gucheri, Dean of the Drexel Universitys College of Engineering, the 2010 Delaware Valley Engineer of the Year
Engineers Club of Philadelphia on behalf of the professional and technical societies in the Delaware Valley reworded Dr. S.Gucheri, the dean of Drexel Universitys CoE, the title of the 2010 Delaware Valley Engineer of the Year.
 
 Contact information
MRC Ltd. Materials research centre
Kiev, Krzhizhanovskogo, 3
Tel.: +38 (044) 233-24-43
Tel.: +38 (044) 237-71-87
Fax: +38 (044) 502-41-49
E-mail:
We work: Mon - Sat ñ 10:00 äî 18:00
Ëèöåíçèÿ Creative Commons

Photos of the projects implemented by MRC TM "ÄÎÌ", as well as articles and videos are published under the Creative Commons Attribution — with preservation of terms
(Attribution-ShareAlike) 3.0 Unported. You can freely copy, distribute, modify the materials with link to the author.

ßíäåêñ öèòèðîâàíèÿ  
0.19