PRODUCTS :
Staircases
Railings and Fences
Entrance Canopies
Glass Structures
Forging
Casting
Woodworking
Rope Systems
Shipbuilding
Refractories
Wind Turbines

MRC ENGINEERING AND MANUFACTURING
ABOUT US PRODUCTS DESIGN PRODUCTION GALLERY VIDEO ARTICLES PARTNERS VACANCIES SITEMAP

Follow us:



MRC SCIENCE AND TECHNOLOGY
R&D PROJECTS PERSONALITY IN SCIENCE International research and education Methods of testing and research Standardization and Certification NANOTECHNOLOGY NEW ENERGY SCIENCE AND TECHNOLOGY ARTICLES


JOURNAL "DOM"
NEWS OF SCIENCE NEWS OF ENGINEERING


LINKS
Materials Research Centre Ltd. DREXEL UNIVERSITY DNI Carbon materials LINKS Yandex Search

News from DOM.UA - science
20.11.2011 12:16
À dramatic expansion of research in the area of electrochemical energy storage (EES) during the past decade has been driven by the demand for EES ...


True Performance Metrics in Electrochemical Energy Storage
Y. Gogotsi * and P. Simon **
Exceptional performance claims for electrodes used in batteries and electrochemical capacitors often fail to hold up when all device components are included.

______________________________________

* Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA.

** Université Paul Sabatier– Toulouse III, CIRIMAT UMR-CNRS 5085, 118 Route de Narbonne, 31062 Toulouse, France. E-mail: gogotsi@drexel.
edu, simon@chimie.ups-tlse.fr

À dramatic expansion of research in the area of electrochemical energy storage (EES) during the past decade has been driven by the demand for EES in handheld electronic devices, transportation, and storage of renewable energy for the power grid . However, the outstanding properties reported for new electrode materials may not necessarily be applicable to performance of electrochemical capacitors (ECs). These devices, also called supercapacitors or ultracapacitors , store charge with ions from solution at charged porous electrodes. Unlike batteries, which store large amounts of energy but deliver it slowly, ECs can deliver energy faster (develop high power), but only for a short time. However, recent work has claimed energy densities for ECs approaching or even exceeding that of batteries. Prof. Y. Gogotsi and Prof. P. Simon in that paper, published in Science Magazine, show that even when some metrics seem to support these claims, actual device performance may be rather mediocre.They focused in that paper on ECs, but these considerations also apply to lithium (Li)—ion batteries.

Increasing the energy density of ECs usually comes at the cost of losses in cyclability or power, which are the most important properties of ECs and without which they become mediocre batteries. A major effort has been directed toward increasing the energy density of ECs by either increasing the capacitance of the material, or the operation voltage window, or both.

Some recent publications on graphene and nanotube-based materials have used Ragone plots to argue that supercapacitors can achieve the energy density of batteries.

Reporting the energy and power densities per weight of active material alone on a Ragone plot may not give a realistic picture of the performance that the assembled device could reach because the weight of the other device components also needs to be taken into account. ECs are similar to Li-ion batteries .

gogotsi-energy-density

A tale of two plots. One way to compare electrical energy storage devices is to use Ragone plots ( 10), which show both power density (speed of charge and discharge) and energy density (storage capacity). These plots for the same electrochemical capacitors are on a gravimetric (per weight) basis in (A) and on a volumetric basis in (B). The plots show that excellent properties of carbon materials will not translate to medium- and large-scale devices if thin-fi lm and/or low-density electrodes are used ( 10).

By presenting energy and power densities in a consistent manner, researchers can facilitate introduction of new materials and fi nd solutions for EES challenges the world faces. National and international testing facilities should be created for benchmarking electrodes and devices similar to the facilities that exist for benchmarking photovoltaics. Clear rules for reporting the performance of new materials for EES devices would help scientists who are not experts in the fi eld, as well as engineers, investors, and the general public, who rely on the data published by the scientists, to assess competing claims. But numerous scientists who have been publishing ridiculous claims about enormous capacity of novel battery materials and energy density of electrochemical capacitors exceeding that of Li-ion batteries in the past couple of years will not like this discourse.

Source: science.mag.org

 
< Ïðåä.   Ñëåä. >

MRC ltd. / Kiev MATERIALS RESEARCH CENTRE    
www.dom.ua    

Science
26.08.2017 02:57
Drexel researchers have developed a recipe for self batteries
MXene
Researchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries...
 
04.06.2017 23:47
Professor Yury Gogotsi was speaking about nanotechnology in energy storage at the World Science Fest
MXene
Join world-class nanoscientists and environmental leaders to explore how the capacity to harness molecules and atoms is accelerating spectacular inventions — including light-weight “wonder materials,” vital energy-storage technologies, and new sources of renewable energy — which promise to redefine the very future of energy...
 
04.06.2017 23:39
MXenes discovered by prof. Yury Gogotsi are at the forefront of 2D materials research
MXene
It’s been just over five years since researchers in Drexel’s Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
11.02.2017 18:56
MATERIAL WITNESSES — RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXEL’S 2D MXENE
MXene
It’s been just over five years since researchers in Drexel’s Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
Engineering
05.12.2009 19:20
In Ukraine was designed and produced its own sliding door system made of polished stainless steel
Sliding door system made of polished stainless steel for internal glass sliding door
Engineers of Materials Research Centre designed and produced the first in Ukraine modernized sliding door system made of polished stainless steel, used for sliding door and panel structures with tempered glass
 
03.12.2009 10:20
Dr. Selçuk Güçeri Named 2010 Delaware Valley Engineer of the Year
Dr. S.Gucheri, Dean of the Drexel Universitys College of Engineering, the 2010 Delaware Valley Engineer of the Year
Engineers Club of Philadelphia on behalf of the professional and technical societies in the Delaware Valley reworded Dr. S.Gucheri, the dean of Drexel Universitys CoE, the title of the 2010 Delaware Valley Engineer of the Year.
 
 Contact information
MRC Ltd. Materials research centre
Kiev, Krzhizhanovskogo, 3
Tel.: +38 (044) 233-24-43
Tel.: +38 (044) 237-71-87
Fax: +38 (044) 502-41-49
E-mail:
We work: Mon - Sat ñ 10:00 äî 18:00
Ëèöåíçèÿ Creative Commons

Photos of the projects implemented by MRC TM "ÄÎÌ", as well as articles and videos are published under the Creative Commons Attribution — with preservation of terms
(Attribution-ShareAlike) 3.0 Unported. You can freely copy, distribute, modify the materials with link to the author.

ßíäåêñ öèòèðîâàíèÿ  
0.16